1 module dlangui.core.math3d;
2
3 import std.math;
4 import std.string : format;
5
6 /// 2 dimensional vector
7 struct vec2 {
8 union {
9 float[2] vec;
10 struct {
11 float x;
12 float y;
13 }
14 }
15 alias u = x;
16 alias v = y;
17 /// create with all components filled with specified value
18 this(float v) {
19 x = v;
20 y = v;
21 }
22 this(float[2] v) {
23 vec = v;
24 }
25 this(float[] v) {
26 vec = v[0..2];
27 }
28 this(float * v) {
29 vec = v[0..2];
30 }
31 this(const vec2 v) {
32 vec = v.vec;
33 }
34 this(float x, float y) {
35 vec[0] = x;
36 vec[1] = y;
37 }
38 ref vec2 opAssign(float[2] v) return {
39 vec = v;
40 return this;
41 }
42 ref vec2 opAssign(vec2 v) return {
43 vec = v.vec;
44 return this;
45 }
46 /// fill all components of vector with specified value
47 ref vec2 clear(float v) return {
48 vec[0] = vec[1] = v;
49 return this;
50 }
51 /// add value to all components of vector
52 ref vec2 add(float v) return {
53 vec[0] += v;
54 vec[1] += v;
55 return this;
56 }
57 /// multiply all components of vector by value
58 ref vec2 mul(float v) return {
59 vec[0] *= v;
60 vec[1] *= v;
61 return this;
62 }
63 /// subtract value from all components of vector
64 ref vec2 sub(float v) return {
65 vec[0] -= v;
66 vec[1] -= v;
67 return this;
68 }
69 /// divide all components of vector by value
70 ref vec2 div(float v) return {
71 vec[0] /= v;
72 vec[1] /= v;
73 return this;
74 }
75 /// add components of another vector to corresponding components of this vector
76 ref vec2 add(vec2 v) return {
77 vec[0] += v.vec[0];
78 vec[1] += v.vec[1];
79 return this;
80 }
81 /// multiply components of this vector by corresponding components of another vector
82 ref vec2 mul(vec2 v) return {
83 vec[0] *= v.vec[0];
84 vec[1] *= v.vec[1];
85 return this;
86 }
87 /// subtract components of another vector from corresponding components of this vector
88 ref vec2 sub(vec2 v) return {
89 vec[0] -= v.vec[0];
90 vec[1] -= v.vec[1];
91 return this;
92 }
93 /// divide components of this vector by corresponding components of another vector
94 ref vec2 div(vec2 v) return {
95 vec[0] /= v.vec[0];
96 vec[1] /= v.vec[1];
97 return this;
98 }
99
100 /// returns vector rotated 90 degrees counter clockwise
101 vec2 rotated90ccw() const {
102 return vec2(-y, x);
103 }
104
105 /// returns vector rotated 90 degrees clockwise
106 vec2 rotated90cw() const {
107 return vec2(y, -x);
108 }
109
110 /// add value to all components of vector
111 vec2 opBinary(string op : "+")(float v) const {
112 vec2 res = this;
113 res.vec[0] += v;
114 res.vec[1] += v;
115 return res;
116 }
117 /// multiply all components of vector by value
118 vec2 opBinary(string op : "*")(float v) const {
119 vec2 res = this;
120 res.vec[0] *= v;
121 res.vec[1] *= v;
122 return res;
123 }
124 /// subtract value from all components of vector
125 vec2 opBinary(string op : "-")(float v) const {
126 vec2 res = this;
127 res.vec[0] -= v;
128 res.vec[1] -= v;
129 return res;
130 }
131 /// divide all components of vector by value
132 vec2 opBinary(string op : "/")(float v) const {
133 vec2 res = this;
134 res.vec[0] /= v;
135 res.vec[1] /= v;
136 return res;
137 }
138
139
140 /// add value to all components of vector
141 ref vec2 opOpAssign(string op : "+")(float v) return {
142 vec[0] += v;
143 vec[1] += v;
144 return this;
145 }
146 /// multiply all components of vector by value
147 ref vec2 opOpAssign(string op : "*")(float v) return {
148 vec[0] *= v;
149 vec[1] *= v;
150 return this;
151 }
152 /// subtract value from all components of vector
153 ref vec2 opOpAssign(string op : "-")(float v) return {
154 vec[0] -= v;
155 vec[1] -= v;
156 vec[2] -= v;
157 return this;
158 }
159 /// divide all components of vector by value
160 ref vec2 opOpAssign(string op : "/")(float v) return {
161 vec[0] /= v;
162 vec[1] /= v;
163 vec[2] /= v;
164 return this;
165 }
166
167 /// by component add values of corresponding components of other vector
168 ref vec2 opOpAssign(string op : "+")(const vec2 v) return {
169 vec[0] += v.vec[0];
170 vec[1] += v.vec[1];
171 return this;
172 }
173 /// by component multiply values of corresponding components of other vector
174 ref vec2 opOpAssign(string op : "*")(const vec2 v) return {
175 vec[0] *= v.vec[0];
176 vec[1] *= v.vec[1];
177 return this;
178 }
179 /// by component subtract values of corresponding components of other vector
180 ref vec2 opOpAssign(string op : "-")(const vec2 v) return {
181 vec[0] -= v.vec[0];
182 vec[1] -= v.vec[1];
183 return this;
184 }
185 /// by component divide values of corresponding components of other vector
186 ref vec2 opOpAssign(string op : "/")(const vec2 v) return {
187 vec[0] /= v.vec[0];
188 vec[1] /= v.vec[1];
189 return this;
190 }
191
192
193 /// add value to all components of vector
194 vec2 opBinary(string op : "+")(const vec2 v) const {
195 vec2 res = this;
196 res.vec[0] += v.vec[0];
197 res.vec[1] += v.vec[1];
198 return res;
199 }
200 /// subtract value from all components of vector
201 vec2 opBinary(string op : "-")(const vec2 v) const {
202 vec2 res = this;
203 res.vec[0] -= v.vec[0];
204 res.vec[1] -= v.vec[1];
205 return res;
206 }
207 /// subtract value from all components of vector
208 float opBinary(string op : "*")(const vec3 v) const {
209 return dot(v);
210 }
211 /// dot product (sum of by-component products of vector components)
212 float dot(const vec2 v) const {
213 float res = 0.0f;
214 res += vec[0] * v.vec[0];
215 res += vec[1] * v.vec[1];
216 return res;
217 }
218
219 /// cross product of 2 vec2 is scalar in Z axis
220 float crossProduct(const vec2 v2) const {
221 return x * v2.y - y * v2.x;
222 }
223
224 /// returns vector with all components which are negative of components for this vector
225 vec2 opUnary(string op : "-")() const {
226 vec2 ret = this;
227 ret.vec[0] = -vec[0];
228 ret.vec[1] = -vec[1];
229 return ret;
230 }
231
232
233 /// sum of squares of all vector components
234 @property float magnitudeSquared() {
235 return vec[0]*vec[0] + vec[1]*vec[1];
236 }
237
238 /// length of vector
239 @property float magnitude() {
240 return sqrt(magnitudeSquared);
241 }
242
243 alias length = magnitude;
244
245 /// normalize vector: make its length == 1
246 void normalize() {
247 div(length);
248 }
249
250 /// returns normalized copy of this vector
251 @property vec2 normalized() {
252 vec2 res = this;
253 res.normalize();
254 return res;
255 }
256 }
257
258 /// 3 dimensional vector
259 struct vec3 {
260 union {
261 float[3] vec;
262 struct {
263 float x;
264 float y;
265 float z;
266 }
267 }
268 //@property ref float x() { return vec[0]; }
269 //@property ref float y() { return vec[1]; }
270 //@property ref float z() { return vec[2]; }
271 alias r = x;
272 alias g = y;
273 alias b = z;
274 /// create with all components filled with specified value
275 this(float v) {
276 x = y = z = v;
277 }
278 this(float[3] v) {
279 vec = v;
280 }
281 this(float[] v) {
282 vec = v[0..3];
283 }
284 this(float * v) {
285 vec = v[0..3];
286 }
287 this(const vec3 v) {
288 vec = v.vec;
289 }
290 this(float x, float y, float z) {
291 vec[0] = x;
292 vec[1] = y;
293 vec[2] = z;
294 }
295 ref vec3 opAssign(float[3] v) return {
296 vec = v;
297 return this;
298 }
299 ref vec3 opAssign(vec3 v) return {
300 vec = v.vec;
301 return this;
302 }
303 ref vec3 opAssign(float x, float y, float z) return {
304 vec[0] = x;
305 vec[1] = y;
306 vec[2] = z;
307 return this;
308 }
309 /// fill all components of vector with specified value
310 ref vec3 clear(float v) return {
311 vec[0] = vec[1] = vec[2] = v;
312 return this;
313 }
314 /// add value to all components of vector
315 ref vec3 add(float v) return {
316 vec[0] += v;
317 vec[1] += v;
318 vec[2] += v;
319 return this;
320 }
321 /// multiply all components of vector by value
322 ref vec3 mul(float v) return {
323 vec[0] *= v;
324 vec[1] *= v;
325 vec[2] *= v;
326 return this;
327 }
328 /// subtract value from all components of vector
329 ref vec3 sub(float v) return {
330 vec[0] -= v;
331 vec[1] -= v;
332 vec[2] -= v;
333 return this;
334 }
335 /// divide all components of vector by value
336 ref vec3 div(float v) return {
337 vec[0] /= v;
338 vec[1] /= v;
339 vec[2] /= v;
340 return this;
341 }
342 /// add components of another vector to corresponding components of this vector
343 ref vec3 add(vec3 v) return {
344 vec[0] += v.vec[0];
345 vec[1] += v.vec[1];
346 vec[2] += v.vec[2];
347 return this;
348 }
349 /// multiply components of this vector by corresponding components of another vector
350 ref vec3 mul(vec3 v) return {
351 vec[0] *= v.vec[0];
352 vec[1] *= v.vec[1];
353 vec[2] *= v.vec[2];
354 return this;
355 }
356 /// subtract components of another vector from corresponding components of this vector
357 ref vec3 sub(vec3 v) return {
358 vec[0] -= v.vec[0];
359 vec[1] -= v.vec[1];
360 vec[2] -= v.vec[2];
361 return this;
362 }
363 /// divide components of this vector by corresponding components of another vector
364 ref vec3 div(vec3 v) return {
365 vec[0] /= v.vec[0];
366 vec[1] /= v.vec[1];
367 vec[2] /= v.vec[2];
368 return this;
369 }
370
371 /// add value to all components of vector
372 vec3 opBinary(string op : "+")(float v) const {
373 vec3 res = this;
374 res.vec[0] += v;
375 res.vec[1] += v;
376 res.vec[2] += v;
377 return res;
378 }
379 /// multiply all components of vector by value
380 vec3 opBinary(string op : "*")(float v) const {
381 vec3 res = this;
382 res.vec[0] *= v;
383 res.vec[1] *= v;
384 res.vec[2] *= v;
385 return res;
386 }
387 /// subtract value from all components of vector
388 vec3 opBinary(string op : "-")(float v) const {
389 vec3 res = this;
390 res.vec[0] -= v;
391 res.vec[1] -= v;
392 res.vec[2] -= v;
393 return res;
394 }
395 /// divide all components of vector by value
396 vec3 opBinary(string op : "/")(float v) const {
397 vec3 res = this;
398 res.vec[0] /= v;
399 res.vec[1] /= v;
400 res.vec[2] /= v;
401 return res;
402 }
403
404
405 /// add value to all components of vector
406 ref vec3 opOpAssign(string op : "+")(float v) {
407 vec[0] += v;
408 vec[1] += v;
409 vec[2] += v;
410 return this;
411 }
412 /// multiply all components of vector by value
413 ref vec3 opOpAssign(string op : "*")(float v) {
414 vec[0] *= v;
415 vec[1] *= v;
416 vec[2] *= v;
417 return this;
418 }
419 /// subtract value from all components of vector
420 ref vec3 opOpAssign(string op : "-")(float v) {
421 vec[0] -= v;
422 vec[1] -= v;
423 vec[2] -= v;
424 return this;
425 }
426 /// divide all components of vector by value
427 ref vec3 opOpAssign(string op : "/")(float v) {
428 vec[0] /= v;
429 vec[1] /= v;
430 vec[2] /= v;
431 return this;
432 }
433
434 /// by component add values of corresponding components of other vector
435 ref vec3 opOpAssign(string op : "+")(const vec3 v) {
436 vec[0] += v.vec[0];
437 vec[1] += v.vec[1];
438 vec[2] += v.vec[2];
439 return this;
440 }
441 /// by component multiply values of corresponding components of other vector
442 ref vec3 opOpAssign(string op : "*")(const vec3 v) {
443 vec[0] *= v.vec[0];
444 vec[1] *= v.vec[1];
445 vec[2] *= v.vec[2];
446 return this;
447 }
448 /// by component subtract values of corresponding components of other vector
449 ref vec3 opOpAssign(string op : "-")(const vec3 v) {
450 vec[0] -= v.vec[0];
451 vec[1] -= v.vec[1];
452 vec[2] -= v.vec[2];
453 return this;
454 }
455 /// by component divide values of corresponding components of other vector
456 ref vec3 opOpAssign(string op : "/")(const vec3 v) {
457 vec[0] /= v.vec[0];
458 vec[1] /= v.vec[1];
459 vec[2] /= v.vec[2];
460 return this;
461 }
462
463
464 /// add value to all components of vector
465 vec3 opBinary(string op : "+")(const vec3 v) const {
466 vec3 res = this;
467 res.vec[0] += v.vec[0];
468 res.vec[1] += v.vec[1];
469 res.vec[2] += v.vec[2];
470 return res;
471 }
472 /// subtract value from all components of vector
473 vec3 opBinary(string op : "-")(const vec3 v) const {
474 vec3 res = this;
475 res.vec[0] -= v.vec[0];
476 res.vec[1] -= v.vec[1];
477 res.vec[2] -= v.vec[2];
478 return res;
479 }
480 /// subtract value from all components of vector
481 float opBinary(string op : "*")(const vec3 v) const {
482 return dot(v);
483 }
484 /// dot product (sum of by-component products of vector components)
485 float dot(const vec3 v) const {
486 float res = 0.0f;
487 res += vec[0] * v.vec[0];
488 res += vec[1] * v.vec[1];
489 res += vec[2] * v.vec[2];
490 return res;
491 }
492
493 /// returns vector with all components which are negative of components for this vector
494 vec3 opUnary(string op : "-")() const {
495 vec3 ret = this;
496 ret.vec[0] = -vec[0];
497 ret.vec[1] = -vec[1];
498 ret.vec[2] = -vec[2];
499 return ret;
500 }
501
502
503 /// sum of squares of all vector components
504 @property float magnitudeSquared() {
505 return vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2];
506 }
507
508 /// length of vector
509 @property float magnitude() {
510 return sqrt(magnitudeSquared);
511 }
512
513 alias length = magnitude;
514
515 /// normalize vector: make its length == 1
516 void normalize() {
517 div(length);
518 }
519
520 /// returns normalized copy of this vector
521 @property vec3 normalized() {
522 vec3 res = this;
523 res.normalize();
524 return res;
525 }
526
527 /// cross product
528 static vec3 crossProduct(const vec3 v1, const vec3 v2) {
529 return vec3(v1.y * v2.z - v1.z * v2.y,
530 v1.z * v2.x - v1.x * v2.z,
531 v1.x * v2.y - v1.y * v2.x);
532 }
533
534 /// multiply vector by matrix
535 vec3 opBinary(string op : "*")(const ref mat4 matrix) const
536 {
537 float xx, yy, zz, ww;
538 xx = x * matrix.m[0*4 + 0] +
539 y * matrix.m[0*4 + 1] +
540 z * matrix.m[0*4 + 2] +
541 matrix.m[0*4 + 3];
542 yy = x * matrix.m[1*4 + 0] +
543 y * matrix.m[1*4 + 1] +
544 z * matrix.m[1*4 + 2] +
545 matrix.m[1*4 + 3];
546 zz = x * matrix.m[2*4 + 0] +
547 y * matrix.m[2*4 + 1] +
548 z * matrix.m[2*4 + 2] +
549 matrix.m[2*4 + 3];
550 ww = x * matrix.m[3*4 + 0] +
551 y * matrix.m[3*4 + 1] +
552 z * matrix.m[3*4 + 2] +
553 matrix.m[3*4 + 3];
554 if (ww == 1.0f)
555 return vec3(xx, yy, zz);
556 else
557 return vec3(xx / ww, yy / ww, zz / ww);
558 }
559
560 @property string toString() {
561 return "(%f,%f,%f)".format(x, y, z);
562 }
563 }
564
565 /// 4 component vector
566 struct vec4 {
567 union {
568 float[4] vec;
569 struct {
570 float x;
571 float y;
572 float z;
573 float w;
574 }
575 }
576 alias r = x;
577 alias g = y;
578 alias b = z;
579 alias a = w;
580 /// create with all components filled with specified value
581 this(float v) {
582 x = y = z = w = v;
583 }
584 this(float[4] v) {
585 vec = v;
586 }
587 this(vec4 v) {
588 vec = v.vec;
589 }
590 this(float x, float y, float z, float w) {
591 vec[0] = x;
592 vec[1] = y;
593 vec[2] = z;
594 vec[3] = w;
595 }
596 this(vec3 v) {
597 vec[0] = v.vec[0];
598 vec[1] = v.vec[1];
599 vec[2] = v.vec[2];
600 vec[3] = 1.0f;
601 }
602 ref vec4 opAssign(const float[4] v) return {
603 vec = v;
604 return this;
605 }
606 ref vec4 opAssign(const vec4 v) return {
607 vec = v.vec;
608 return this;
609 }
610 ref vec4 opAssign(float x, float y, float z, float w) return {
611 vec[0] = x;
612 vec[1] = y;
613 vec[2] = z;
614 vec[3] = w;
615 return this;
616 }
617 ref vec4 opAssign(const vec3 v) return {
618 vec[0] = v.vec[0];
619 vec[1] = v.vec[1];
620 vec[2] = v.vec[2];
621 vec[3] = 1.0f;
622 return this;
623 }
624
625
626 /// fill all components of vector with specified value
627 ref vec4 clear(float v) return {
628 vec[0] = vec[1] = vec[2] = vec[3] = v;
629 return this;
630 }
631 /// add value to all components of vector
632 ref vec4 add(float v) return {
633 vec[0] += v;
634 vec[1] += v;
635 vec[2] += v;
636 vec[3] += v;
637 return this;
638 }
639 /// multiply all components of vector by value
640 ref vec4 mul(float v) return {
641 vec[0] *= v;
642 vec[1] *= v;
643 vec[2] *= v;
644 vec[3] *= v;
645 return this;
646 }
647 /// subtract value from all components of vector
648 ref vec4 sub(float v) return {
649 vec[0] -= v;
650 vec[1] -= v;
651 vec[2] -= v;
652 vec[3] -= v;
653 return this;
654 }
655 /// divide all components of vector by value
656 ref vec4 div(float v) return {
657 vec[0] /= v;
658 vec[1] /= v;
659 vec[2] /= v;
660 vec[3] /= v;
661 return this;
662 }
663 /// add components of another vector to corresponding components of this vector
664 ref vec4 add(const vec4 v) return {
665 vec[0] += v.vec[0];
666 vec[1] += v.vec[1];
667 vec[2] += v.vec[2];
668 vec[3] += v.vec[3];
669 return this;
670 }
671 /// multiply components of this vector by corresponding components of another vector
672 ref vec4 mul(vec4 v) return {
673 vec[0] *= v.vec[0];
674 vec[1] *= v.vec[1];
675 vec[2] *= v.vec[2];
676 vec[3] *= v.vec[3];
677 return this;
678 }
679 /// subtract components of another vector from corresponding components of this vector
680 ref vec4 sub(vec4 v) return {
681 vec[0] -= v.vec[0];
682 vec[1] -= v.vec[1];
683 vec[2] -= v.vec[2];
684 vec[3] -= v.vec[3];
685 return this;
686 }
687 /// divide components of this vector by corresponding components of another vector
688 ref vec4 div(vec4 v) return {
689 vec[0] /= v.vec[0];
690 vec[1] /= v.vec[1];
691 vec[2] /= v.vec[2];
692 vec[3] /= v.vec[3];
693 return this;
694 }
695
696 /// add value to all components of vector
697 vec4 opBinary(string op : "+")(float v) const return {
698 vec4 res = this;
699 res.vec[0] += v;
700 res.vec[1] += v;
701 res.vec[2] += v;
702 res.vec[3] += v;
703 return res;
704 }
705 /// multiply all components of vector by value
706 vec4 opBinary(string op : "*")(float v) const return {
707 vec4 res = this;
708 res.vec[0] *= v;
709 res.vec[1] *= v;
710 res.vec[2] *= v;
711 res.vec[3] *= v;
712 return res;
713 }
714 /// subtract value from all components of vector
715 vec4 opBinary(string op : "-")(float v) const return {
716 vec4 res = this;
717 res.vec[0] -= v;
718 res.vec[1] -= v;
719 res.vec[2] -= v;
720 res.vec[3] -= v;
721 return res;
722 }
723 /// divide all components of vector by value
724 vec4 opBinary(string op : "/")(float v) const return {
725 vec4 res = this;
726 res.vec[0] /= v;
727 res.vec[1] /= v;
728 res.vec[2] /= v;
729 res.vec[3] /= v;
730 return res;
731 }
732
733 /// add value to all components of vector
734 ref vec4 opOpAssign(string op : "+")(float v) return {
735 vec[0] += v;
736 vec[1] += v;
737 vec[2] += v;
738 vec[3] += v;
739 return this;
740 }
741 /// multiply all components of vector by value
742 ref vec4 opOpAssign(string op : "*")(float v) return {
743 vec[0] *= v;
744 vec[1] *= v;
745 vec[2] *= v;
746 vec[3] *= v;
747 return this;
748 }
749 /// subtract value from all components of vector
750 ref vec4 opOpAssign(string op : "-")(float v) return {
751 vec[0] -= v;
752 vec[1] -= v;
753 vec[2] -= v;
754 vec[3] -= v;
755 return this;
756 }
757 /// divide all components of vector by value
758 ref vec4 opOpAssign(string op : "/")(float v) return {
759 vec[0] /= v;
760 vec[1] /= v;
761 vec[2] /= v;
762 vec[3] /= v;
763 return this;
764 }
765
766 /// by component add values of corresponding components of other vector
767 ref vec4 opOpAssign(string op : "+")(const vec4 v) return {
768 vec[0] += v.vec[0];
769 vec[1] += v.vec[1];
770 vec[2] += v.vec[2];
771 vec[3] += v.vec[3];
772 return this;
773 }
774 /// by component multiply values of corresponding components of other vector
775 ref vec4 opOpAssign(string op : "*")(const vec4 v) return {
776 vec[0] *= v.vec[0];
777 vec[1] *= v.vec[1];
778 vec[2] *= v.vec[2];
779 vec[3] *= v.vec[3];
780 return this;
781 }
782 /// by component subtract values of corresponding components of other vector
783 ref vec4 opOpAssign(string op : "-")(const vec4 v) return {
784 vec[0] -= v.vec[0];
785 vec[1] -= v.vec[1];
786 vec[2] -= v.vec[2];
787 vec[3] -= v.vec[3];
788 return this;
789 }
790 /// by component divide values of corresponding components of other vector
791 ref vec4 opOpAssign(string op : "/")(const vec4 v) return {
792 vec[0] /= v.vec[0];
793 vec[1] /= v.vec[1];
794 vec[2] /= v.vec[2];
795 vec[3] /= v.vec[3];
796 return this;
797 }
798
799
800
801 /// add value to all components of vector
802 vec4 opBinary(string op : "+")(const vec4 v) const return {
803 vec4 res = this;
804 res.vec[0] += v.vec[0];
805 res.vec[1] += v.vec[1];
806 res.vec[2] += v.vec[2];
807 res.vec[3] += v.vec[3];
808 return res;
809 }
810 /// subtract value from all components of vector
811 vec4 opBinary(string op : "-")(const vec4 v) const return {
812 vec4 res = this;
813 res.vec[0] -= v.vec[0];
814 res.vec[1] -= v.vec[1];
815 res.vec[2] -= v.vec[2];
816 res.vec[3] -= v.vec[3];
817 return res;
818 }
819 /// subtract value from all components of vector
820 float opBinary(string op : "*")(const vec4 v) const {
821 return dot(v);
822 }
823 /// dot product (sum of by-component products of vector components)
824 float dot(vec4 v) const {
825 float res = 0.0f;
826 res += vec[0] * v.vec[0];
827 res += vec[1] * v.vec[1];
828 res += vec[2] * v.vec[2];
829 res += vec[3] * v.vec[3];
830 return res;
831 }
832
833 /// returns vector with all components which are negative of components for this vector
834 vec4 opUnary(string op : "-")() const return {
835 vec4 ret = this;
836 ret[0] = -vec[0];
837 ret[1] = -vec[1];
838 ret[2] = -vec[2];
839 ret[3] = -vec[3];
840 return ret;
841 }
842
843
844
845 /// sum of squares of all vector components
846 @property float magnitudeSquared() {
847 return vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2] + vec[3]*vec[3];
848 }
849
850 /// length of vector
851 @property float magnitude() {
852 return sqrt(magnitudeSquared);
853 }
854
855 alias length = magnitude;
856
857 /// normalize vector: make its length == 1
858 void normalize() {
859 div(length);
860 }
861
862 /// returns normalized copy of this vector
863 @property vec4 normalized() return {
864 vec4 res = this;
865 res.normalize();
866 return res;
867 }
868
869 /// multiply vector by matrix
870 vec4 opBinary(string op : "*")(const ref mat4 matrix) const
871 {
872 float xx, yy, zz, ww;
873 xx = x * matrix.m[0*4 + 0] +
874 y * matrix.m[0*4 + 1] +
875 z * matrix.m[0*4 + 2] +
876 w * matrix.m[0*4 + 3];
877 yy = x * matrix.m[1*4 + 0] +
878 y * matrix.m[1*4 + 1] +
879 z * matrix.m[1*4 + 2] +
880 w * matrix.m[1*4 + 3];
881 zz = x * matrix.m[2*4 + 0] +
882 y * matrix.m[2*4 + 1] +
883 z * matrix.m[2*4 + 2] +
884 w * matrix.m[2*4 + 3];
885 ww = x * matrix.m[3*4 + 0] +
886 y * matrix.m[3*4 + 1] +
887 z * matrix.m[3*4 + 2] +
888 w * matrix.m[3*4 + 3];
889 return vec4(xx, yy, zz, ww);
890 }
891
892 @property string toString() {
893 return "(%f,%f,%f,%f)".format(x, y, z, w);
894 }
895 }
896
897 bool fuzzyNull(float v) {
898 return v < 0.0000001f && v > -0.0000001f;
899 }
900
901 /// float matrix 4 x 4
902 struct mat4 {
903 float[16] m = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
904
905 @property string dump() const {
906 import std.conv : to;
907 return to!string(m[0..4]) ~ to!string(m[4..8]) ~ to!string(m[8..12]) ~ to!string(m[12..16]);
908 }
909
910 //alias m this;
911
912 this(float v) {
913 setDiagonal(v);
914 }
915
916 this(const ref mat4 v) {
917 m[0..16] = v.m[0..16];
918 }
919 this(const float[16] v) {
920 m[0..16] = v[0..16];
921 }
922
923 ref mat4 opAssign(const ref mat4 v) return {
924 m[0..16] = v.m[0..16];
925 return this;
926 }
927 ref mat4 opAssign(const mat4 v) return {
928 m[0..16] = v.m[0..16];
929 return this;
930 }
931 ref mat4 opAssign(const float[16] v) return {
932 m[0..16] = v[0..16];
933 return this;
934 }
935
936 void setOrtho(float left, float right, float bottom, float top, float nearPlane, float farPlane)
937 {
938 // Bail out if the projection volume is zero-sized.
939 if (left == right || bottom == top || nearPlane == farPlane)
940 return;
941
942 // Construct the projection.
943 float width = right - left;
944 float invheight = top - bottom;
945 float clip = farPlane - nearPlane;
946 m[0*4 + 0] = 2.0f / width;
947 m[1*4 + 0] = 0.0f;
948 m[2*4 + 0] = 0.0f;
949 m[3*4 + 0] = -(left + right) / width;
950 m[0*4 + 1] = 0.0f;
951 m[1*4 + 1] = 2.0f / invheight;
952 m[2*4 + 1] = 0.0f;
953 m[3*4 + 1] = -(top + bottom) / invheight;
954 m[0*4 + 2] = 0.0f;
955 m[1*4 + 2] = 0.0f;
956 m[2*4 + 2] = -2.0f / clip;
957 m[3*4 + 2] = -(nearPlane + farPlane) / clip;
958 m[0*4 + 3] = 0.0f;
959 m[1*4 + 3] = 0.0f;
960 m[2*4 + 3] = 0.0f;
961 m[3*4 + 3] = 1.0f;
962 }
963
964 void setPerspective(float angle, float aspect, float nearPlane, float farPlane)
965 {
966 // Bail out if the projection volume is zero-sized.
967 float radians = (angle / 2.0f) * PI / 180.0f;
968 if (nearPlane == farPlane || aspect == 0.0f || radians < 0.0001f)
969 return;
970 float f = 1 / tan(radians);
971 float d = 1 / (nearPlane - farPlane);
972
973 // Construct the projection.
974 m[0*4 + 0] = f / aspect;
975 m[1*4 + 0] = 0.0f;
976 m[2*4 + 0] = 0.0f;
977 m[3*4 + 0] = 0.0f;
978
979 m[0*4 + 1] = 0.0f;
980 m[1*4 + 1] = f;
981 m[2*4 + 1] = 0.0f;
982 m[3*4 + 1] = 0.0f;
983
984 m[0*4 + 2] = 0.0f;
985 m[1*4 + 2] = 0.0f;
986 m[2*4 + 2] = (nearPlane + farPlane) * d;
987 m[3*4 + 2] = 2.0f * nearPlane * farPlane * d;
988
989 m[0*4 + 3] = 0.0f;
990 m[1*4 + 3] = 0.0f;
991 m[2*4 + 3] = -1.0f;
992 m[3*4 + 3] = 0.0f;
993 }
994
995 ref mat4 lookAt(const vec3 eye, const vec3 center, const vec3 up) return {
996 vec3 forward = (center - eye).normalized();
997 vec3 side = vec3.crossProduct(forward, up).normalized();
998 vec3 upVector = vec3.crossProduct(side, forward);
999
1000 mat4 m;
1001 m.setIdentity();
1002 m[0*4 + 0] = side.x;
1003 m[1*4 + 0] = side.y;
1004 m[2*4 + 0] = side.z;
1005 m[3*4 + 0] = 0.0f;
1006 m[0*4 + 1] = upVector.x;
1007 m[1*4 + 1] = upVector.y;
1008 m[2*4 + 1] = upVector.z;
1009 m[3*4 + 1] = 0.0f;
1010 m[0*4 + 2] = -forward.x;
1011 m[1*4 + 2] = -forward.y;
1012 m[2*4 + 2] = -forward.z;
1013 m[3*4 + 2] = 0.0f;
1014 m[0*4 + 3] = 0.0f;
1015 m[1*4 + 3] = 0.0f;
1016 m[2*4 + 3] = 0.0f;
1017 m[3*4 + 3] = 1.0f;
1018
1019 this *= m;
1020 translate(-eye);
1021 return this;
1022 }
1023
1024 /// transpose matrix
1025 void transpose() {
1026 float[16] tmp = [
1027 m[0], m[4], m[8], m[12],
1028 m[1], m[5], m[9], m[13],
1029 m[2], m[6], m[10], m[14],
1030 m[3], m[7], m[11], m[15]
1031 ];
1032 m = tmp;
1033 }
1034
1035 mat4 invert() const
1036 {
1037 float a0 = m[0] * m[5] - m[1] * m[4];
1038 float a1 = m[0] * m[6] - m[2] * m[4];
1039 float a2 = m[0] * m[7] - m[3] * m[4];
1040 float a3 = m[1] * m[6] - m[2] * m[5];
1041 float a4 = m[1] * m[7] - m[3] * m[5];
1042 float a5 = m[2] * m[7] - m[3] * m[6];
1043 float b0 = m[8] * m[13] - m[9] * m[12];
1044 float b1 = m[8] * m[14] - m[10] * m[12];
1045 float b2 = m[8] * m[15] - m[11] * m[12];
1046 float b3 = m[9] * m[14] - m[10] * m[13];
1047 float b4 = m[9] * m[15] - m[11] * m[13];
1048 float b5 = m[10] * m[15] - m[11] * m[14];
1049
1050 // Calculate the determinant.
1051 float det = a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0;
1052
1053 mat4 inverse;
1054
1055 // Close to zero, can't invert.
1056 if (fabs(det) <= 0.00000001f)
1057 return inverse;
1058
1059 // Support the case where m == dst.
1060 inverse.m[0] = m[5] * b5 - m[6] * b4 + m[7] * b3;
1061 inverse.m[1] = -m[1] * b5 + m[2] * b4 - m[3] * b3;
1062 inverse.m[2] = m[13] * a5 - m[14] * a4 + m[15] * a3;
1063 inverse.m[3] = -m[9] * a5 + m[10] * a4 - m[11] * a3;
1064
1065 inverse.m[4] = -m[4] * b5 + m[6] * b2 - m[7] * b1;
1066 inverse.m[5] = m[0] * b5 - m[2] * b2 + m[3] * b1;
1067 inverse.m[6] = -m[12] * a5 + m[14] * a2 - m[15] * a1;
1068 inverse.m[7] = m[8] * a5 - m[10] * a2 + m[11] * a1;
1069
1070 inverse.m[8] = m[4] * b4 - m[5] * b2 + m[7] * b0;
1071 inverse.m[9] = -m[0] * b4 + m[1] * b2 - m[3] * b0;
1072 inverse.m[10] = m[12] * a4 - m[13] * a2 + m[15] * a0;
1073 inverse.m[11] = -m[8] * a4 + m[9] * a2 - m[11] * a0;
1074
1075 inverse.m[12] = -m[4] * b3 + m[5] * b1 - m[6] * b0;
1076 inverse.m[13] = m[0] * b3 - m[1] * b1 + m[2] * b0;
1077 inverse.m[14] = -m[12] * a3 + m[13] * a1 - m[14] * a0;
1078 inverse.m[15] = m[8] * a3 - m[9] * a1 + m[10] * a0;
1079
1080 float mul = 1.0f / det;
1081 inverse *= mul;
1082 return inverse;
1083 }
1084
1085 ref mat4 setLookAt(const vec3 eye, const vec3 center, const vec3 up) return {
1086 setIdentity();
1087 lookAt(eye, center, up);
1088 return this;
1089 }
1090
1091 ref mat4 translate(const vec3 v) return {
1092 m[3*4 + 0] += m[0*4 + 0] * v.x + m[1*4 + 0] * v.y + m[2*4 + 0] * v.z;
1093 m[3*4 + 1] += m[0*4 + 1] * v.x + m[1*4 + 1] * v.y + m[2*4 + 1] * v.z;
1094 m[3*4 + 2] += m[0*4 + 2] * v.x + m[1*4 + 2] * v.y + m[2*4 + 2] * v.z;
1095 m[3*4 + 3] += m[0*4 + 3] * v.x + m[1*4 + 3] * v.y + m[2*4 + 3] * v.z;
1096 return this;
1097 }
1098
1099 ref mat4 translate(float x, float y, float z) return {
1100 m[3*4 + 0] += m[0*4 + 0] * x + m[1*4 + 0] * y + m[2*4 + 0] * z;
1101 m[3*4 + 1] += m[0*4 + 1] * x + m[1*4 + 1] * y + m[2*4 + 1] * z;
1102 m[3*4 + 2] += m[0*4 + 2] * x + m[1*4 + 2] * y + m[2*4 + 2] * z;
1103 m[3*4 + 3] += m[0*4 + 3] * x + m[1*4 + 3] * y + m[2*4 + 3] * z;
1104 return this;
1105 }
1106
1107 /// add scalar to all items of matrix
1108 mat4 opBinary(string op : "+")(float v) const {
1109 foreach(ref item; m)
1110 item += v;
1111 }
1112
1113 /// multiply this matrix by scalar
1114 mat4 opBinary(string op : "-")(float v) const {
1115 foreach(ref item; m)
1116 item -= v;
1117 }
1118
1119 /// multiply this matrix by scalar
1120 mat4 opBinary(string op : "*")(float v) const {
1121 foreach(ref item; m)
1122 item *= v;
1123 }
1124
1125 /// multiply this matrix by scalar
1126 mat4 opBinary(string op : "/")(float v) const {
1127 foreach(ref item; m)
1128 item /= v;
1129 }
1130
1131 /// multiply this matrix by another matrix
1132 mat4 opBinary(string op : "*")(const ref mat4 m2) const {
1133 return mul(this, m2);
1134 }
1135
1136 /// multiply this matrix by another matrix
1137 void opOpAssign(string op : "*")(const ref mat4 m2) {
1138 this = mul(this, m2);
1139 }
1140
1141 /// multiply two matrices
1142 static mat4 mul(const ref mat4 m1, const ref mat4 m2) {
1143 mat4 m;
1144 m.m[0*4 + 0] =
1145 m1.m[0*4 + 0] * m2.m[0*4 + 0] +
1146 m1.m[1*4 + 0] * m2.m[0*4 + 1] +
1147 m1.m[2*4 + 0] * m2.m[0*4 + 2] +
1148 m1.m[3*4 + 0] * m2.m[0*4 + 3];
1149 m.m[0*4 + 1] =
1150 m1.m[0*4 + 1] * m2.m[0*4 + 0] +
1151 m1.m[1*4 + 1] * m2.m[0*4 + 1] +
1152 m1.m[2*4 + 1] * m2.m[0*4 + 2] +
1153 m1.m[3*4 + 1] * m2.m[0*4 + 3];
1154 m.m[0*4 + 2] =
1155 m1.m[0*4 + 2] * m2.m[0*4 + 0] +
1156 m1.m[1*4 + 2] * m2.m[0*4 + 1] +
1157 m1.m[2*4 + 2] * m2.m[0*4 + 2] +
1158 m1.m[3*4 + 2] * m2.m[0*4 + 3];
1159 m.m[0*4 + 3] =
1160 m1.m[0*4 + 3] * m2.m[0*4 + 0] +
1161 m1.m[1*4 + 3] * m2.m[0*4 + 1] +
1162 m1.m[2*4 + 3] * m2.m[0*4 + 2] +
1163 m1.m[3*4 + 3] * m2.m[0*4 + 3];
1164 m.m[1*4 + 0] =
1165 m1.m[0*4 + 0] * m2.m[1*4 + 0] +
1166 m1.m[1*4 + 0] * m2.m[1*4 + 1] +
1167 m1.m[2*4 + 0] * m2.m[1*4 + 2] +
1168 m1.m[3*4 + 0] * m2.m[1*4 + 3];
1169 m.m[1*4 + 1] =
1170 m1.m[0*4 + 1] * m2.m[1*4 + 0] +
1171 m1.m[1*4 + 1] * m2.m[1*4 + 1] +
1172 m1.m[2*4 + 1] * m2.m[1*4 + 2] +
1173 m1.m[3*4 + 1] * m2.m[1*4 + 3];
1174 m.m[1*4 + 2] =
1175 m1.m[0*4 + 2] * m2.m[1*4 + 0] +
1176 m1.m[1*4 + 2] * m2.m[1*4 + 1] +
1177 m1.m[2*4 + 2] * m2.m[1*4 + 2] +
1178 m1.m[3*4 + 2] * m2.m[1*4 + 3];
1179 m.m[1*4 + 3] =
1180 m1.m[0*4 + 3] * m2.m[1*4 + 0] +
1181 m1.m[1*4 + 3] * m2.m[1*4 + 1] +
1182 m1.m[2*4 + 3] * m2.m[1*4 + 2] +
1183 m1.m[3*4 + 3] * m2.m[1*4 + 3];
1184 m.m[2*4 + 0] =
1185 m1.m[0*4 + 0] * m2.m[2*4 + 0] +
1186 m1.m[1*4 + 0] * m2.m[2*4 + 1] +
1187 m1.m[2*4 + 0] * m2.m[2*4 + 2] +
1188 m1.m[3*4 + 0] * m2.m[2*4 + 3];
1189 m.m[2*4 + 1] =
1190 m1.m[0*4 + 1] * m2.m[2*4 + 0] +
1191 m1.m[1*4 + 1] * m2.m[2*4 + 1] +
1192 m1.m[2*4 + 1] * m2.m[2*4 + 2] +
1193 m1.m[3*4 + 1] * m2.m[2*4 + 3];
1194 m.m[2*4 + 2] =
1195 m1.m[0*4 + 2] * m2.m[2*4 + 0] +
1196 m1.m[1*4 + 2] * m2.m[2*4 + 1] +
1197 m1.m[2*4 + 2] * m2.m[2*4 + 2] +
1198 m1.m[3*4 + 2] * m2.m[2*4 + 3];
1199 m.m[2*4 + 3] =
1200 m1.m[0*4 + 3] * m2.m[2*4 + 0] +
1201 m1.m[1*4 + 3] * m2.m[2*4 + 1] +
1202 m1.m[2*4 + 3] * m2.m[2*4 + 2] +
1203 m1.m[3*4 + 3] * m2.m[2*4 + 3];
1204 m.m[3*4 + 0] =
1205 m1.m[0*4 + 0] * m2.m[3*4 + 0] +
1206 m1.m[1*4 + 0] * m2.m[3*4 + 1] +
1207 m1.m[2*4 + 0] * m2.m[3*4 + 2] +
1208 m1.m[3*4 + 0] * m2.m[3*4 + 3];
1209 m.m[3*4 + 1] =
1210 m1.m[0*4 + 1] * m2.m[3*4 + 0] +
1211 m1.m[1*4 + 1] * m2.m[3*4 + 1] +
1212 m1.m[2*4 + 1] * m2.m[3*4 + 2] +
1213 m1.m[3*4 + 1] * m2.m[3*4 + 3];
1214 m.m[3*4 + 2] =
1215 m1.m[0*4 + 2] * m2.m[3*4 + 0] +
1216 m1.m[1*4 + 2] * m2.m[3*4 + 1] +
1217 m1.m[2*4 + 2] * m2.m[3*4 + 2] +
1218 m1.m[3*4 + 2] * m2.m[3*4 + 3];
1219 m.m[3*4 + 3] =
1220 m1.m[0*4 + 3] * m2.m[3*4 + 0] +
1221 m1.m[1*4 + 3] * m2.m[3*4 + 1] +
1222 m1.m[2*4 + 3] * m2.m[3*4 + 2] +
1223 m1.m[3*4 + 3] * m2.m[3*4 + 3];
1224 return m;
1225 }
1226
1227 /// multiply matrix by vec3
1228 vec3 opBinary(string op : "*")(const vec3 vector) const
1229 {
1230 float x, y, z, w;
1231 x = vector.x * m[0*4 + 0] +
1232 vector.y * m[1*4 + 0] +
1233 vector.z * m[2*4 + 0] +
1234 m[3*4 + 0];
1235 y = vector.x * m[0*4 + 1] +
1236 vector.y * m[1*4 + 1] +
1237 vector.z * m[2*4 + 1] +
1238 m[3*4 + 1];
1239 z = vector.x * m[0*4 + 2] +
1240 vector.y * m[1*4 + 2] +
1241 vector.z * m[2*4 + 2] +
1242 m[3*4 + 2];
1243 w = vector.x * m[0*4 + 3] +
1244 vector.y * m[1*4 + 3] +
1245 vector.z * m[2*4 + 3] +
1246 m[3*4 + 3];
1247 if (w == 1.0f)
1248 return vec3(x, y, z);
1249 else
1250 return vec3(x / w, y / w, z / w);
1251 }
1252
1253 /// multiply matrix by vec4
1254 vec4 opBinary(string op : "*")(const vec4 vector) const
1255 {
1256 float x, y, z, w;
1257 x = vector.x * m[0*4 + 0] +
1258 vector.y * m[1*4 + 0] +
1259 vector.z * m[2*4 + 0] +
1260 vector.w * m[3*4 + 0];
1261 y = vector.x * m[0*4 + 1] +
1262 vector.y * m[1*4 + 1] +
1263 vector.z * m[2*4 + 1] +
1264 vector.w * m[3*4 + 1];
1265 z = vector.x * m[0*4 + 2] +
1266 vector.y * m[1*4 + 2] +
1267 vector.z * m[2*4 + 2] +
1268 vector.w * m[3*4 + 2];
1269 w = vector.x * m[0*4 + 3] +
1270 vector.y * m[1*4 + 3] +
1271 vector.z * m[2*4 + 3] +
1272 vector.w * m[3*4 + 3];
1273 return vec4(x, y, z, w);
1274 }
1275
1276 /// 2d index by row, col
1277 ref float opIndex(int y, int x) return {
1278 return m[y*4 + x];
1279 }
1280
1281 /// 2d index by row, col
1282 float opIndex(int y, int x) const return {
1283 return m[y*4 + x];
1284 }
1285
1286 /// scalar index by rows then (y*4 + x)
1287 ref float opIndex(int index) return {
1288 return m[index];
1289 }
1290
1291 /// scalar index by rows then (y*4 + x)
1292 float opIndex(int index) const return {
1293 return m[index];
1294 }
1295
1296 /// set to identity: fill all items of matrix with zero except main diagonal items which will be assigned to 1.0f
1297 ref mat4 setIdentity() return {
1298 return setDiagonal(1.0f);
1299 }
1300 /// set to diagonal: fill all items of matrix with zero except main diagonal items which will be assigned to v
1301 ref mat4 setDiagonal(float v) return {
1302 for (int x = 0; x < 4; x++) {
1303 for (int y = 0; y < 4; y++) {
1304 if (x == y)
1305 m[y * 4 + x] = v;
1306 else
1307 m[y * 4 + x] = 0.0f;
1308 }
1309 }
1310 return this;
1311 }
1312 /// fill all items of matrix with specified value
1313 ref mat4 fill(float v) return {
1314 foreach(ref f; m)
1315 f = v;
1316 return this;
1317 }
1318 /// fill all items of matrix with zero
1319 ref mat4 setZero() return {
1320 foreach(ref f; m)
1321 f = 0.0f;
1322 return this;
1323 }
1324 /// creates identity matrix
1325 static mat4 identity() {
1326 mat4 res;
1327 return res.setIdentity();
1328 }
1329 /// creates zero matrix
1330 static mat4 zero() {
1331 mat4 res;
1332 return res.setZero();
1333 }
1334
1335
1336 /// add value to all components of matrix
1337 void opOpAssign(string op : "+")(float v) {
1338 foreach(ref item; m)
1339 item += v;
1340 }
1341 /// multiply all components of matrix by value
1342 void opOpAssign(string op : "*")(float v) {
1343 foreach(ref item; m)
1344 item *= v;
1345 }
1346 /// subtract value from all components of matrix
1347 void opOpAssign(string op : "-")(float v) {
1348 foreach(ref item; m)
1349 item -= v;
1350 }
1351 /// divide all components of vector by matrix
1352 void opOpAssign(string op : "/")(float v) {
1353 foreach(ref item; m)
1354 item /= v;
1355 }
1356
1357 /// inplace rotate around Z axis
1358 ref mat4 rotatez(float angle) return {
1359 return rotate(angle, 0, 0, 1);
1360 }
1361
1362 /// inplace rotate around X axis
1363 ref mat4 rotatex(float angle) return {
1364 return rotate(angle, 1, 0, 0);
1365 }
1366
1367 /// inplace rotate around Y axis
1368 ref mat4 rotatey(float angle) return {
1369 return rotate(angle, 0, 1, 0);
1370 }
1371
1372 ref mat4 rotate(float angle, const vec3 axis) return {
1373 return rotate(angle, axis.x, axis.y, axis.z);
1374 }
1375
1376 ref mat4 rotate(float angle, float x, float y, float z) return {
1377 if (angle == 0.0f)
1378 return this;
1379 mat4 m;
1380 float c, s, ic;
1381 if (angle == 90.0f || angle == -270.0f) {
1382 s = 1.0f;
1383 c = 0.0f;
1384 } else if (angle == -90.0f || angle == 270.0f) {
1385 s = -1.0f;
1386 c = 0.0f;
1387 } else if (angle == 180.0f || angle == -180.0f) {
1388 s = 0.0f;
1389 c = -1.0f;
1390 } else {
1391 float a = angle * PI / 180.0f;
1392 c = cos(a);
1393 s = sin(a);
1394 }
1395 bool quick = false;
1396 if (x == 0.0f) {
1397 if (y == 0.0f) {
1398 if (z != 0.0f) {
1399 // Rotate around the Z axis.
1400 m.setIdentity();
1401 m.m[0*4 + 0] = c;
1402 m.m[1*4 + 1] = c;
1403 if (z < 0.0f) {
1404 m.m[1*4 + 0] = s;
1405 m.m[0*4 + 1] = -s;
1406 } else {
1407 m.m[1*4 + 0] = -s;
1408 m.m[0*4 + 1] = s;
1409 }
1410 quick = true;
1411 }
1412 } else if (z == 0.0f) {
1413 // Rotate around the Y axis.
1414 m.setIdentity();
1415 m.m[0*4 + 0] = c;
1416 m.m[2*4 + 2] = c;
1417 if (y < 0.0f) {
1418 m.m[2*4 + 0] = -s;
1419 m.m[0*4 + 2] = s;
1420 } else {
1421 m.m[2*4 + 0] = s;
1422 m.m[0*4 + 2] = -s;
1423 }
1424 quick = true;
1425 }
1426 } else if (y == 0.0f && z == 0.0f) {
1427 // Rotate around the X axis.
1428 m.setIdentity();
1429 m.m[1*4 + 1] = c;
1430 m.m[2*4 + 2] = c;
1431 if (x < 0.0f) {
1432 m.m[2*4 + 1] = s;
1433 m.m[1*4 + 2] = -s;
1434 } else {
1435 m.m[2*4 + 1] = -s;
1436 m.m[1*4 + 2] = s;
1437 }
1438 quick = true;
1439 }
1440 if (!quick) {
1441 float len = x * x + y * y + z * z;
1442 if (!fuzzyNull(len - 1.0f) && !fuzzyNull(len)) {
1443 len = sqrt(len);
1444 x /= len;
1445 y /= len;
1446 z /= len;
1447 }
1448 ic = 1.0f - c;
1449 m.m[0*4 + 0] = x * x * ic + c;
1450 m.m[1*4 + 0] = x * y * ic - z * s;
1451 m.m[2*4 + 0] = x * z * ic + y * s;
1452 m.m[3*4 + 0] = 0.0f;
1453 m.m[0*4 + 1] = y * x * ic + z * s;
1454 m.m[1*4 + 1] = y * y * ic + c;
1455 m.m[2*4 + 1] = y * z * ic - x * s;
1456 m.m[3*4 + 1] = 0.0f;
1457 m.m[0*4 + 2] = x * z * ic - y * s;
1458 m.m[1*4 + 2] = y * z * ic + x * s;
1459 m.m[2*4 + 2] = z * z * ic + c;
1460 m.m[3*4 + 2] = 0.0f;
1461 m.m[0*4 + 3] = 0.0f;
1462 m.m[1*4 + 3] = 0.0f;
1463 m.m[2*4 + 3] = 0.0f;
1464 m.m[3*4 + 3] = 1.0f;
1465 }
1466 this *= m;
1467 return this;
1468 }
1469
1470 ref mat4 rotateX(float angle) return {
1471 return rotate(angle, 1, 0, 0);
1472 }
1473
1474 ref mat4 rotateY(float angle) return {
1475 return rotate(angle, 0, 1, 0);
1476 }
1477
1478 ref mat4 rotateZ(float angle) return {
1479 return rotate(angle, 0, 0, 1);
1480 }
1481
1482 ref mat4 scale(float x, float y, float z) return {
1483 m[0*4 + 0] *= x;
1484 m[0*4 + 1] *= x;
1485 m[0*4 + 2] *= x;
1486 m[0*4 + 3] *= x;
1487 m[1*4 + 0] *= y;
1488 m[1*4 + 1] *= y;
1489 m[1*4 + 2] *= y;
1490 m[1*4 + 3] *= y;
1491 m[2*4 + 0] *= z;
1492 m[2*4 + 1] *= z;
1493 m[2*4 + 2] *= z;
1494 m[2*4 + 3] *= z;
1495 return this;
1496 }
1497
1498 ref mat4 scale(float v) return {
1499 m[0*4 + 0] *= v;
1500 m[0*4 + 1] *= v;
1501 m[0*4 + 2] *= v;
1502 m[0*4 + 3] *= v;
1503 m[1*4 + 0] *= v;
1504 m[1*4 + 1] *= v;
1505 m[1*4 + 2] *= v;
1506 m[1*4 + 3] *= v;
1507 m[2*4 + 0] *= v;
1508 m[2*4 + 1] *= v;
1509 m[2*4 + 2] *= v;
1510 m[2*4 + 3] *= v;
1511 //m[3*4 + 0] *= v;
1512 //m[3*4 + 1] *= v;
1513 //m[3*4 + 2] *= v;
1514 //m[3*4 + 3] *= v;
1515 return this;
1516 }
1517
1518 ref mat4 scale(const vec3 v) return {
1519 m[0*4 + 0] *= v.x;
1520 m[0*4 + 1] *= v.x;
1521 m[0*4 + 2] *= v.x;
1522 m[0*4 + 3] *= v.x;
1523 m[1*4 + 0] *= v.y;
1524 m[1*4 + 1] *= v.y;
1525 m[1*4 + 2] *= v.y;
1526 m[1*4 + 3] *= v.y;
1527 m[2*4 + 0] *= v.z;
1528 m[2*4 + 1] *= v.z;
1529 m[2*4 + 2] *= v.z;
1530 m[2*4 + 3] *= v.z;
1531 return this;
1532 }
1533
1534 static mat4 translation(float x, float y, float z) {
1535 // TODO
1536 mat4 res = 1;
1537 return res;
1538 }
1539
1540 /**
1541 * Decomposes the scale, rotation and translation components of this matrix.
1542 *
1543 * @param scale The scale.
1544 * @param rotation The rotation.
1545 * @param translation The translation.
1546 */
1547 bool decompose(vec3 * scale, vec4 * rotation, vec3 * translation) const {
1548 if (translation)
1549 {
1550 // Extract the translation.
1551 translation.x = m[12];
1552 translation.y = m[13];
1553 translation.z = m[14];
1554 }
1555
1556 // Nothing left to do.
1557 if (!scale && !rotation)
1558 return true;
1559
1560 // Extract the scale.
1561 // This is simply the length of each axis (row/column) in the matrix.
1562 vec3 xaxis = vec3(m[0], m[1], m[2]);
1563 float scaleX = xaxis.length();
1564
1565 vec3 yaxis = vec3(m[4], m[5], m[6]);
1566 float scaleY = yaxis.length();
1567
1568 vec3 zaxis = vec3(m[8], m[9], m[10]);
1569 float scaleZ = zaxis.length();
1570
1571 // Determine if we have a negative scale (true if determinant is less than zero).
1572 // In this case, we simply negate a single axis of the scale.
1573 float det = determinant();
1574 if (det < 0)
1575 scaleZ = -scaleZ;
1576
1577 if (scale)
1578 {
1579 scale.x = scaleX;
1580 scale.y = scaleY;
1581 scale.z = scaleZ;
1582 }
1583
1584 // Nothing left to do.
1585 if (!rotation)
1586 return true;
1587
1588 //// Scale too close to zero, can't decompose rotation.
1589 //if (scaleX < MATH_TOLERANCE || scaleY < MATH_TOLERANCE || fabs(scaleZ) < MATH_TOLERANCE)
1590 // return false;
1591 // TODO: support rotation
1592 return false;
1593 }
1594
1595 /**
1596 * Gets the translational component of this matrix in the specified vector.
1597 *
1598 * @param translation A vector to receive the translation.
1599 */
1600 void getTranslation(ref vec3 translation) const
1601 {
1602 decompose(null, null, &translation);
1603 }
1604
1605 @property float determinant() const
1606 {
1607 float a0 = m[0] * m[5] - m[1] * m[4];
1608 float a1 = m[0] * m[6] - m[2] * m[4];
1609 float a2 = m[0] * m[7] - m[3] * m[4];
1610 float a3 = m[1] * m[6] - m[2] * m[5];
1611 float a4 = m[1] * m[7] - m[3] * m[5];
1612 float a5 = m[2] * m[7] - m[3] * m[6];
1613 float b0 = m[8] * m[13] - m[9] * m[12];
1614 float b1 = m[8] * m[14] - m[10] * m[12];
1615 float b2 = m[8] * m[15] - m[11] * m[12];
1616 float b3 = m[9] * m[14] - m[10] * m[13];
1617 float b4 = m[9] * m[15] - m[11] * m[13];
1618 float b5 = m[10] * m[15] - m[11] * m[14];
1619 // Calculate the determinant.
1620 return (a0 * b5 - a1 * b4 + a2 * b3 + a3 * b2 - a4 * b1 + a5 * b0);
1621 }
1622
1623 @property vec3 forwardVector() const
1624 {
1625 return vec3(-m[8], -m[9], -m[10]);
1626 }
1627
1628 @property vec3 backVector() const
1629 {
1630 return vec3(m[8], m[9], m[10]);
1631 }
1632
1633 void transformVector(ref vec3 v) const {
1634 transformVector(v.x, v.y, v.z, 0, v);
1635 }
1636
1637 void transformPoint(ref vec3 v) const {
1638 transformVector(v.x, v.y, v.z, 1, v);
1639 }
1640
1641 void transformVector(float x, float y, float z, float w, ref vec3 dst) const {
1642 dst.x = x * m[0] + y * m[4] + z * m[8] + w * m[12];
1643 dst.y = x * m[1] + y * m[5] + z * m[9] + w * m[13];
1644 dst.z = x * m[2] + y * m[6] + z * m[10] + w * m[14];
1645 }
1646
1647 static __gshared const mat4 IDENTITY;
1648 }
1649
1650
1651
1652 unittest {
1653 vec3 a, b, c;
1654 a.clear(5);
1655 b.clear(2);
1656 float d = a * b;
1657 auto r1 = a + b;
1658 auto r2 = a - b;
1659 c = a; c += b;
1660 c = a; c -= b;
1661 c = a; c *= b;
1662 c = a; c /= b;
1663 c += 0.3f;
1664 c -= 0.3f;
1665 c *= 0.3f;
1666 c /= 0.3f;
1667 a.x += 0.5f;
1668 a.y += 0.5f;
1669 a.z += 0.5f;
1670 auto v = b.vec;
1671 a = [0.1f, 0.2f, 0.3f];
1672 a.normalize();
1673 c = b.normalized;
1674 }
1675
1676 unittest {
1677 vec4 a, b, c;
1678 a.clear(5);
1679 b.clear(2);
1680 float d = a * b;
1681 auto r1 = a + b;
1682 auto r2 = a - b;
1683 c = a; c += b;
1684 c = a; c -= b;
1685 c = a; c *= b;
1686 c = a; c /= b;
1687 c += 0.3f;
1688 c -= 0.3f;
1689 c *= 0.3f;
1690 c /= 0.3f;
1691 a.x += 0.5f;
1692 a.y += 0.5f;
1693 a.z += 0.5f;
1694 auto v = b.vec;
1695 a = [0.1f, 0.2f, 0.3f, 0.4f];
1696 a.normalize();
1697 c = b.normalized;
1698 }
1699
1700 unittest {
1701 mat4 m;
1702 m.setIdentity();
1703 m = [1.0f,2.0f,3.0f,4.0f,5.0f,6.0f,7.0f,8.0f,9.0f,10.0f,11.0f,12.0f,13.0f,14.0f,15.0f,16.0f];
1704 float r;
1705 r = m[1, 3];
1706 m[2, 1] = 0.0f;
1707 m += 1;
1708 m -= 2;
1709 m *= 3;
1710 m /= 3;
1711 m.translate(vec3(2, 3, 4));
1712 m.translate(5, 6, 7);
1713 m.lookAt(vec3(5, 5, 5), vec3(0, 0, 0), vec3(-1, 1, 1));
1714 m.setLookAt(vec3(5, 5, 5), vec3(0, 0, 0), vec3(-1, 1, 1));
1715 m.scale(2,3,4);
1716 m.scale(vec3(2,3,4));
1717
1718 vec3 vv1 = vec3(1,2,3);
1719 auto p1 = m * vv1;
1720 vec3 vv2 = vec3(3,4,5);
1721 auto p2 = vv2 * m;
1722 auto p3 = vec4(1,2,3,4) * m;
1723 auto p4 = m * vec4(1,2,3,4);
1724
1725 m.rotate(30, 1, 1, 1);
1726 m.rotateX(10);
1727 m.rotateY(10);
1728 m.rotateZ(10);
1729 }
1730
1731 /// calculate normal for triangle
1732 vec3 triangleNormal(vec3 p1, vec3 p2, vec3 p3) {
1733 return vec3.crossProduct(p2 - p1, p3 - p2).normalized();
1734 }
1735
1736 /// calculate normal for triangle
1737 vec3 triangleNormal(float[3] p1, float[3] p2, float[3] p3) {
1738 return vec3.crossProduct(vec3(p2) - vec3(p1), vec3(p3) - vec3(p2)).normalized();
1739 }
1740
1741 /// Alias for 2d float point
1742 alias PointF = vec2;
1743
1744
1745
1746
1747 // this form can be used within shaders
1748 /// cubic bezier curve
1749 PointF bezierCubic(const PointF[] cp, float t) pure @nogc @safe
1750 in { assert(cp.length > 3); } do
1751 {
1752 // control points
1753 auto p0 = cp[0];
1754 auto p1 = cp[1];
1755 auto p2 = cp[2];
1756 auto p3 = cp[3];
1757
1758 float u1 = (1.0 - t);
1759 float u2 = t * t;
1760 // the polynomials
1761 float b3 = u2 * t;
1762 float b2 = 3.0 * u2 * u1;
1763 float b1 = 3.0 * t * u1 * u1;
1764 float b0 = u1 * u1 * u1;
1765 // cubic bezier interpolation
1766 PointF p = p0 * b0 + p1 * b1 + p2 * b2 + p3 * b3;
1767 return p;
1768 }
1769
1770 /// quadratic bezier curve (not tested)
1771 PointF bezierQuadratic(const PointF[] cp, float t) pure @nogc @safe
1772 in { assert(cp.length > 2); } do
1773 {
1774 auto p0 = cp[0];
1775 auto p1 = cp[1];
1776 auto p2 = cp[2];
1777
1778 float u1 = (1.0 - t);
1779 float u2 = u1 * u1;
1780
1781 float b2 = t * t;
1782 float b1 = 2.0 * u1 * t;
1783 float b0 = u2;
1784
1785 PointF p = p0 * b0 + p1 * b1 + p2 * b2;
1786 return p;
1787 }
1788
1789 /// cubic bezier (first) derivative
1790 PointF bezierCubicDerivative(const PointF[] cp, float t) pure @nogc @safe
1791 in { assert(cp.length > 3); } do
1792 {
1793 auto p0 = cp[0];
1794 auto p1 = cp[1];
1795 auto p2 = cp[2];
1796 auto p3 = cp[3];
1797
1798 float u1 = (1.0 - t);
1799 float u2 = t * t;
1800 float u3 = 6*(u1)*t;
1801 float d0 = 3 * u1 * u1;
1802 // -3*P0*(1-t)^2 + P1*(3*(1-t)^2 - 6*(1-t)*t) + P2*(6*(1-t)*t - 3*t^2) + 3*P3*t^2
1803 PointF d = p0*(-d0) + p1*(d0 - u3) + p2*(u3 - 3*u2) + (p3*3)*u2;
1804 return d;
1805 }
1806
1807 /// quadratic bezier (first) derivative
1808 PointF bezierQuadraticDerivative(const PointF[] cp, float t) pure @nogc @safe
1809 in { assert(cp.length > 2); } do
1810 {
1811 auto p0 = cp[0];
1812 auto p1 = cp[1];
1813 auto p2 = cp[2];
1814
1815 float u1 = (1.0 - t);
1816 // -2*(1-t)*(p1-p0) + 2*t*(p2-p1);
1817 PointF d = (p0-p1)*-2*u1 + (p2-p1)*2*t;
1818 return d;
1819 }
1820
1821 // can't be pure due to normalize & vec2 ctor
1822 /// evaluates cubic bezier direction(tangent) at point t
1823 PointF bezierCubicDirection(const PointF[] cp, float t) {
1824 auto d = bezierCubicDerivative(cp,t);
1825 d.normalize();
1826 return PointF(tan(d.x), tan(d.y));
1827 }
1828
1829 /// evaluates quadratic bezier direction(tangent) at point t
1830 PointF bezierQuadraticDirection(const PointF[] cp, float t) {
1831 auto d = bezierQuadraticDerivative(cp,t);
1832 d.normalize();
1833 return PointF(tan(d.x), tan(d.y));
1834 }
1835
1836 /// templated version of bezier flatten curve function, allocates temporary buffer
1837 PointF[] flattenBezier(alias BezierFunc)(const PointF[] cp, int segmentCountInclusive)
1838 if (is(typeof(BezierFunc)==function))
1839 {
1840 if (segmentCountInclusive < 2)
1841 return PointF[].init;
1842 PointF[] coords = new PointF[segmentCountInclusive+1];
1843 flattenBezier!BezierFunc(cp, segmentCountInclusive, coords);
1844 return coords;
1845 }
1846
1847 /// flatten bezier curve function, writes to provided buffer instead of allocation
1848 void flattenBezier(alias BezierFunc)(const PointF[] cp, int segmentCountInclusive, PointF[] outSegments)
1849 if (is(typeof(BezierFunc)==function))
1850 {
1851 if (segmentCountInclusive < 2)
1852 return;
1853 float step = 1f/segmentCountInclusive;
1854 outSegments[0] = BezierFunc(cp, 0);
1855 foreach(i; 1..segmentCountInclusive) {
1856 outSegments[i] = BezierFunc(cp, i*step);
1857 }
1858 outSegments[segmentCountInclusive] = BezierFunc(cp, 1f);
1859 }
1860
1861
1862 /// flattens cubic bezier curve, returns PointF[segmentCount+1] array or empty array if <1 segments
1863 PointF[] flattenBezierCubic(const PointF[] cp, int segmentCount) {
1864 return flattenBezier!bezierCubic(cp,segmentCount);
1865 }
1866
1867 /// flattens quadratic bezier curve, returns PointF[segmentCount+1] array or empty array if <1 segments
1868 PointF[] flattenBezierQuadratic(const PointF[] cp, int segmentCount) {
1869 return flattenBezier!bezierQuadratic(cp, segmentCount);
1870 }
1871
1872 /// calculates normal vector at point t using direction
1873 PointF bezierCubicNormal(const PointF[] cp, float t) {
1874 auto d = bezierCubicDirection(cp, t);
1875 return d.rotated90ccw;
1876 }
1877
1878 /// calculates normal vector at point t using direction
1879 PointF bezierQuadraticNormal(const PointF[] cp, float t) {
1880 auto d = bezierQuadraticDerivative(cp, t);
1881 return d.rotated90ccw;
1882 }